DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion criteria to develop, experiment, and properly scale your generative AI concepts on AWS.
In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement learning to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key distinguishing feature is its support learning (RL) step, which was utilized to improve the design's reactions beyond the standard pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately boosting both importance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, meaning it's geared up to break down complicated questions and factor through them in a detailed manner. This directed reasoning process allows the model to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation model that can be incorporated into numerous workflows such as representatives, rational reasoning and data analysis tasks.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion criteria, making it possible for effective reasoning by routing questions to the most relevant specialist "clusters." This technique enables the design to specialize in various issue domains while maintaining total efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective designs to imitate the habits and reasoning patterns of the bigger DeepSeek-R1 design, using it as an instructor model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest releasing this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid damaging content, and assess models against key safety requirements. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop multiple guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit boost, develop a limitation increase request and reach out to your account group.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For guidelines, see Set up consents to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, prevent hazardous material, and evaluate designs against essential safety criteria. You can implement security procedures for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to examine user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The general circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections show inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.
The model detail page offers important details about the design's capabilities, rates structure, and implementation standards. You can find detailed usage instructions, consisting of sample API calls and code bits for combination. The design supports various text generation tasks, including content development, code generation, and question answering, utilizing its support learning optimization and CoT thinking capabilities.
The page also consists of implementation alternatives and licensing details to assist you start with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, choose Deploy.
You will be triggered to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, get in a variety of circumstances (in between 1-100).
6. For Instance type, select your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can set up innovative security and facilities settings, consisting of virtual private cloud (VPC) networking, service role approvals, and encryption settings. For most use cases, the default settings will work well. However, for production deployments, you may want to evaluate these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin using the model.
When the deployment is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play area.
8. Choose Open in play ground to access an interactive user interface where you can try out different triggers and change model specifications like temperature level and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for ideal outcomes. For instance, material for reasoning.
This is an outstanding method to check out the model's reasoning and text generation abilities before integrating it into your applications. The play area provides immediate feedback, assisting you understand how the design responds to various inputs and letting you tweak your triggers for ideal results.
You can rapidly evaluate the model in the play area through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference criteria, and sends out a request to produce text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient techniques: utilizing the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to help you select the method that finest matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to produce a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model internet browser shows available models, with details like the supplier name and design capabilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each design card reveals essential details, consisting of:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if applicable), showing that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the model
5. Choose the model card to view the design details page.
The model details page consists of the following details:
- The model name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you deploy the model, it's suggested to examine the design details and license terms to verify compatibility with your use case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, use the immediately generated name or produce a customized one.
- For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the number of circumstances (default: 1). Selecting proper instance types and counts is essential for cost and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
- Review all configurations for accuracy. For this model, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to deploy the design.
The release process can take a number of minutes to finish.
When implementation is total, your endpoint status will change to InService. At this point, the design is ready to accept inference requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the deployment is total, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for hb9lc.org reasoning programmatically. The code for releasing the model is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as shown in the following code:
Clean up
To avoid unwanted charges, complete the actions in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you deployed the design using Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace deployments. - In the Managed releases area, locate the endpoint you desire to delete.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the proper release: 1. Endpoint name.
- Model name.
-
Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct innovative services using AWS services and accelerated compute. Currently, he is focused on developing techniques for fine-tuning and enhancing the reasoning efficiency of large language models. In his downtime, Vivek enjoys hiking, viewing motion pictures, and attempting various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing services that assist customers accelerate their AI journey and unlock business value.