Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
Y yozgatblog
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 26
    • Issues 26
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
Collapse sidebar
  • Charlie Tallis
  • yozgatblog
  • Issues
  • #21

Closed
Open
Created Apr 08, 2025 by Charlie Tallis@charlietallis7Maintainer

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library developed to facilitate the advancement of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research study, making published research study more easily reproducible [24] [144] while supplying users with a basic user interface for communicating with these environments. In 2022, new developments of Gym have been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support learning (RL) research study on video games [147] utilizing RL algorithms and study generalization. Prior RL research study focused mainly on optimizing agents to solve single tasks. Gym Retro gives the ability to generalize in between video games with similar ideas but different appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives at first lack understanding of how to even stroll, but are given the objectives of learning to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing procedure, the representatives find out how to adapt to altering conditions. When an agent is then gotten rid of from this virtual environment and placed in a new virtual environment with high winds, the agent braces to remain upright, recommending it had learned how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors in between representatives might create an intelligence "arms race" that might increase an agent's ability to operate even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a group of 5 OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that discover to play against human gamers at a high ability level totally through trial-and-error algorithms. Before becoming a team of 5, the very first public presentation occurred at The International 2017, the annual premiere championship competition for the video game, where Dendi, a professional Ukrainian player, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had found out by playing against itself for 2 weeks of actual time, which the knowing software application was an action in the instructions of producing software application that can manage complex tasks like a cosmetic surgeon. [152] [153] The system utilizes a type of support knowing, as the bots learn gradually by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map objectives. [154] [155] [156]
By June 2018, the capability of the bots broadened to play together as a full group of 5, and they were able to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibition matches against expert players, but wound up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the reigning world champs of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public appearance came later that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the obstacles of AI systems in multiplayer online fight arena (MOBA) games and how OpenAI Five has actually shown using deep reinforcement learning (DRL) representatives to attain superhuman competence in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses device finding out to train a Shadow Hand, a human-like robotic hand, to manipulate physical things. [167] It finds out totally in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI took on the things orientation issue by utilizing domain randomization, a simulation method which exposes the student to a range of experiences rather than attempting to fit to reality. The set-up for Dactyl, aside from having movement tracking electronic cameras, also has RGB cams to enable the robotic to manipulate an arbitrary item by seeing it. In 2018, OpenAI showed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, wiki.myamens.com OpenAI showed that Dactyl could fix a Rubik's Cube. The robotic was able to solve the puzzle 60% of the time. Objects like the Rubik's Cube present intricate physics that is harder to design. OpenAI did this by enhancing the robustness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation approach of creating gradually more difficult environments. ADR varies from manual domain randomization by not requiring a human to specify randomization varieties. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI designs developed by OpenAI" to let developers call on it for "any English language AI task". [170] [171]
Text generation

The business has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")

The original paper on generative pre-training of a transformer-based language design was written by Alec Radford and his coworkers, and released in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative model of language might obtain world understanding and process long-range dependences by pre-training on a diverse corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language model and the follower to OpenAI's initial GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with just limited demonstrative variations at first released to the general public. The full version of GPT-2 was not right away released due to concern about prospective abuse, including applications for composing fake news. [174] Some specialists revealed uncertainty that GPT-2 posed a significant danger.

In action to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to discover "neural phony news". [175] Other researchers, such as Jeremy Howard, warned of "the innovation to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the complete version of the GPT-2 language design. [177] Several sites host interactive presentations of different instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose students, highlighted by GPT-2 attaining modern precision and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not further trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by using byte pair encoding. This permits representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full variation of GPT-3 contained 175 billion specifications, [184] 2 orders of magnitude larger than the 1.5 billion [185] in the full variation of GPT-2 (although GPT-3 designs with as couple of as 125 million criteria were likewise trained). [186]
OpenAI stated that GPT-3 was successful at certain "meta-learning" jobs and could generalize the purpose of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer learning in between English and Romanian, and in between English and German. [184]
GPT-3 dramatically improved benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language models could be approaching or encountering the essential ability constraints of predictive language designs. [187] Pre-training GPT-3 required several thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not immediately launched to the public for concerns of possible abuse, although OpenAI prepared to enable gain access to through a paid cloud API after a two-month totally free private beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed exclusively to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually additionally been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the model can create working code in over a dozen programming languages, yewiki.org most successfully in Python. [192]
Several concerns with glitches, style defects and security vulnerabilities were mentioned. [195] [196]
GitHub Copilot has been accused of discharging copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would discontinue assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the updated innovation passed a simulated law school bar exam with a rating around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also read, evaluate or produce up to 25,000 words of text, and compose code in all significant shows languages. [200]
Observers reported that the version of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based iteration, with the caution that GPT-4 retained some of the issues with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has actually declined to expose numerous technical details and data about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained cutting edge lead to voice, multilingual, and vision standards, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly beneficial for business, start-ups and developers seeking to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini designs, which have been developed to take more time to think of their reactions, resulting in higher precision. These models are particularly effective in science, coding, and reasoning tasks, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI revealed o3, the follower of the o1 thinking model. OpenAI likewise unveiled o3-mini, a lighter and quicker variation of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the chance to obtain early access to these designs. [214] The model is called o3 rather than o2 to avoid confusion with telecoms services supplier O2. [215]
Deep research

Deep research study is an agent developed by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 model to perform comprehensive web browsing, information analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With browsing and Python tools made it possible for, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic resemblance in between text and images. It can significantly be used for wiki.dulovic.tech image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that develops images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to interpret natural language inputs (such as "a green leather purse formed like a pentagon" or "an isometric view of an unfortunate capybara") and generate corresponding images. It can produce pictures of reasonable objects ("a stained-glass window with a picture of a blue strawberry") as well as things that do not exist in truth ("a cube with the texture of a porcupine"). Since March 2021, bytes-the-dust.com no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an updated variation of the model with more realistic results. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a brand-new rudimentary system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more powerful design much better able to produce images from complicated descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was launched to the general public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can generate videos based on short detailed prompts [223] along with extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution as much as 1920x1080 or 1080x1920. The optimum length of generated videos is unknown.

Sora's development team called it after the Japanese word for "sky", to signify its "limitless innovative potential". [223] Sora's technology is an adjustment of the innovation behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos in addition to copyrighted videos accredited for that purpose, however did not expose the number or the exact sources of the videos. [223]
OpenAI showed some videos to the public on February 15, 2024, specifying that it could create videos up to one minute long. It likewise shared a technical report highlighting the techniques utilized to train the design, and the model's capabilities. [225] It acknowledged some of its drawbacks, consisting of battles mimicing intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "outstanding", but kept in mind that they should have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, significant entertainment-industry figures have revealed significant interest in the innovation's potential. In an interview, actor/filmmaker Tyler Perry expressed his awe at the innovation's capability to generate reasonable video from text descriptions, citing its possible to reinvent storytelling and content creation. He said that his excitement about Sora's possibilities was so strong that he had actually chosen to pause plans for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a big dataset of varied audio and is likewise a multi-task model that can carry out multilingual speech recognition as well as speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can produce songs with 10 instruments in 15 designs. According to The Verge, a tune generated by MuseNet tends to begin fairly but then fall under chaos the longer it plays. [230] [231] In pop culture, initial applications of this tool were used as early as 2020 for the internet psychological thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs tune samples. OpenAI specified the songs "show local musical coherence [and] follow conventional chord patterns" however acknowledged that the tunes do not have "familiar bigger musical structures such as choruses that repeat" which "there is a substantial gap" in between Jukebox and human-generated music. The Verge mentioned "It's technically impressive, even if the outcomes sound like mushy versions of tunes that might feel familiar", while Business Insider mentioned "remarkably, a few of the resulting tunes are catchy and sound genuine". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches machines to debate toy problems in front of a human judge. The purpose is to research whether such a method may assist in auditing AI choices and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every significant layer and neuron of eight neural network models which are often studied in interpretability. [240] Microscope was created to examine the features that form inside these neural networks quickly. The designs consisted of are AlexNet, VGG-19, various versions of Inception, and different variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an expert system tool constructed on top of GPT-3 that provides a conversational user interface that enables users to ask concerns in natural language. The system then reacts with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking