DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, wavedream.wiki along with the distilled versions ranging from 1.5 to 70 billion specifications to construct, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses reinforcement discovering to improve thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key identifying feature is its reinforcement learning (RL) step, which was utilized to fine-tune the design's reactions beyond the basic pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, eventually enhancing both importance and clearness. In addition, DeepSeek-R1 employs a (CoT) technique, implying it's geared up to break down intricate queries and factor through them in a detailed way. This guided thinking procedure permits the design to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to produce structured reactions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually caught the market's attention as a flexible text-generation model that can be integrated into various workflows such as agents, rational thinking and data analysis jobs.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion parameters, allowing efficient reasoning by routing questions to the most relevant professional "clusters." This technique permits the design to focus on different issue domains while maintaining general performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective designs to mimic the habits and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor design.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise releasing this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, prevent damaging content, and assess designs against crucial safety criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation increase, produce a limitation increase demand and connect to your account team.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For instructions, see Establish authorizations to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, avoid harmful content, and evaluate models against crucial security criteria. You can execute precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic flow involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the last result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.
The design detail page provides important details about the design's capabilities, rates structure, and implementation guidelines. You can discover detailed usage instructions, consisting of sample API calls and code bits for combination. The model supports numerous text generation jobs, consisting of material production, code generation, and concern answering, utilizing its reinforcement finding out optimization and CoT thinking abilities.
The page also includes deployment options and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, select Deploy.
You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, enter a number of circumstances (in between 1-100).
6. For example type, select your circumstances type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can set up innovative security and facilities settings, including virtual private cloud (VPC) networking, service role permissions, and file encryption settings. For a lot of use cases, the default settings will work well. However, for production deployments, you may wish to examine these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the deployment is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive interface where you can try out different triggers and change model specifications like temperature level and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal results. For example, content for inference.
This is an outstanding method to check out the design's reasoning and text generation abilities before integrating it into your applications. The playground offers immediate feedback, assisting you understand how the design reacts to various inputs and letting you tweak your prompts for optimum results.
You can rapidly check the model in the play ground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to carry out reasoning using a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference specifications, and sends out a demand to create text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient methods: utilizing the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both methods to help you pick the technique that best matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design internet browser shows available models, with details like the provider name and design capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each model card shows key details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if appropriate), showing that this design can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the design card to see the design details page.
The model details page includes the following details:
- The design name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical requirements.
- Usage guidelines
Before you deploy the design, it's recommended to evaluate the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, use the instantly created name or develop a custom one.
- For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is essential for expense and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
- Review all setups for precision. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to release the design.
The release procedure can take numerous minutes to complete.
When implementation is total, your endpoint status will alter to InService. At this point, the model is prepared to accept reasoning requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is total, you can conjure up the model utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the model is offered in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:
Clean up
To prevent unwanted charges, finish the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the design using Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases. - In the Managed implementations section, locate the endpoint you want to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the proper deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct innovative services utilizing AWS services and accelerated compute. Currently, he is focused on developing methods for fine-tuning and enhancing the inference performance of big language models. In his free time, Vivek delights in treking, viewing motion pictures, and attempting different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing solutions that help clients accelerate their AI journey and unlock organization value.