DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI concepts on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to enhance thinking abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key identifying function is its support knowing (RL) step, which was used to improve the design's actions beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, ultimately boosting both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, suggesting it's geared up to break down complex questions and factor through them in a detailed manner. This assisted thinking procedure allows the model to produce more precise, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT abilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has captured the market's attention as a versatile text-generation model that can be integrated into numerous workflows such as agents, rational reasoning and data interpretation jobs.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion specifications, allowing efficient inference by routing queries to the most pertinent expert "clusters." This technique allows the design to focus on different problem domains while maintaining general performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more efficient models to simulate the habits and reasoning patterns of the larger DeepSeek-R1 design, using it as a teacher design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid harmful material, and examine models against key safety requirements. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce multiple guardrails tailored to different use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, SageMaker, pipewiki.org and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit increase, develop a limit boost request and connect to your account team.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For guidelines, see Establish permissions to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, prevent harmful content, and evaluate models against essential security criteria. You can carry out precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general flow includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the final outcome. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, pick Model brochure under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 model.
The model detail page supplies essential details about the model's abilities, rates structure, and application standards. You can discover detailed usage instructions, consisting of sample API calls and code snippets for combination. The model supports various text generation jobs, consisting of content production, code generation, and question answering, utilizing its reinforcement learning optimization and CoT thinking capabilities.
The page likewise includes deployment options and licensing details to assist you get going with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, select Deploy.
You will be triggered to configure the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, go into a number of circumstances (between 1-100).
6. For Instance type, pick your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and facilities settings, including virtual personal cloud (VPC) networking, service role consents, and encryption settings. For a lot of use cases, the default settings will work well. However, for production deployments, you might wish to review these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the implementation is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in playground to access an interactive interface where you can explore various prompts and adjust model specifications like temperature and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal results. For instance, content for inference.
This is an outstanding method to explore the design's reasoning and text generation capabilities before integrating it into your applications. The play area supplies instant feedback, helping you understand how the design responds to numerous inputs and letting you tweak your triggers for optimum outcomes.
You can quickly check the design in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends out a demand to produce text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 convenient approaches: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both techniques to help you pick the technique that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design internet browser displays available models, with details like the provider name and design capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card reveals crucial details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if suitable), indicating that this design can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model
5. Choose the model card to view the model details page.
The design details page consists of the following details:
- The design name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical specifications.
- Usage guidelines
Before you release the design, it's recommended to examine the design details and license terms to verify compatibility with your usage case.
6. Choose Deploy to continue with release.
7. For Endpoint name, utilize the immediately produced name or develop a custom one.
- For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the variety of circumstances (default: 1). Selecting appropriate instance types and counts is vital for expense and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
- Review all configurations for precision. For this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to deploy the model.
The implementation process can take several minutes to complete.
When implementation is complete, your endpoint status will alter to InService. At this moment, the model is all set to accept reasoning requests through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the deployment is total, you can invoke the model using a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the required AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the model is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:
Tidy up
To prevent unwanted charges, complete the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the model using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace deployments. - In the Managed releases section, find the endpoint you desire to delete.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're deleting the appropriate deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative solutions using AWS services and accelerated compute. Currently, he is concentrated on establishing strategies for fine-tuning and enhancing the inference efficiency of large language designs. In his downtime, Vivek delights in treking, enjoying films, and trying various foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing services that assist customers accelerate their AI journey and unlock organization worth.